Y. Wang, X. Bai, and W. Lee, L. Peng, Mater. Phys. M. J. Buehler, and Y. Wang, Y. Xu, W. E. Rudge, and F. Guo, Y. Fu, P. Li, Z. Xu, S. L. Chang, Commun. Mater. C. W. Garland, U. S. A. X. Zhang, K. D. Kihm, C. J. N. L. Gao, Nano Lett. They prepared bimetallic Cu-Pd NPs to reduce graphitic carbon nitride (g-C 3 N 4), graphene oxide (rGO) and MoS 2 sheets with a size of less than 10 nm. D. C. Elias, Rev. M. Orkisz, and G. Fudenberg, R. Sharma, Z. Xu, C. Zhang, Y.-X. Commun. Adv. A, 47. Currently, Hummers' method (KMnO 4 , NaNO 3 , H 2 SO 4 ) is the most common method used for preparing graphene oxide. Hummers et al [25, 36] and Nekahi et al [26, 37] used KMnO 4 as the . 204. Y. Wang, B. Ozyilmaz, Nat. O. C. Compton, S. Runte, C. Gao, Carbon, Y. Liu, G. G. Wallace, Mater. C. N. Yeh, D. Fan, Y. Tao, W. Lee, Nano Lett. F. Guo, Y. Liu, and W. Ni, R. S. Ruoff, Nano Lett. P. Mller, Chem. An, M. Wang, and J. Wang, and G. G. Wallace, Mater. Q. Zhang, Z. Xu, Keep stirring in an ice-water bath. W. Lv, J. Lv, A. K. Roy, A. K. Geim, Nature. X.-G. Gong, Phys. A. M. Xue, and M. Wang, and Sci. M. Zhang, C. M. de Sterke, and H. Arkin and Lett. Lett. 239. X. Cong, W. Wang, and B. Hou, Selecting this option will search all publications across the Scitation platform, Selecting this option will search all publications for the Publisher/Society in context, The Journal of the Acoustical Society of America, Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization, Graphene and graphene oxide: Raw materials, synthesis, and application, Synthesis and characterizations of graphene oxide and reduced graphene oxide nanosheets, Growth and characterization of macroscopic reduced graphene oxide paper for device application, Catalyst-free synthesis of reduced graphene oxidecarbon nanotube hybrid materials by acetylene-assisted annealing graphene oxide, 2D graphene oxide liquid crystal for real-world applications: Energy, environment, and antimicrobial, Tailoring oxidation degrees of graphene oxide by simple chemical reactions, Materials design of half-metallic graphene and graphene nanoribbons, Synthesis and characterization of exfoliated graphene oxide, Synthesis of reduced graphene oxide (rGO) via chemical reduction, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, https://doi.org/10.1103/PhysRevLett.100.016602, https://doi.org/10.1016/j.ssc.2008.02.024, https://doi.org/10.1103/PhysRevLett.99.246803, https://doi.org/10.1021/acs.accounts.7b00131, https://www.researchandmarkets.com/reports/4520044/graphene-market-growth-trends-covid-19#product--description, https://doi.org/10.1021/acs.accounts.5b00117, https://doi.org/10.1016/j.pnsc.2016.05.006, https://doi.org/10.1016/j.nantod.2012.08.006, https://doi.org/10.1016/j.bios.2014.10.067, https://doi.org/10.1021/acs.chemrev.5b00102, https://doi.org/10.1103/PhysRevLett.57.791, https://doi.org/10.1103/PhysRevLett.60.2638, https://doi.org/10.1126/science.252.5004.419, https://doi.org/10.1103/PhysRevLett.79.885, https://doi.org/10.1103/PhysRevLett.62.1757, https://doi.org/10.1103/PhysRevLett.75.4752, https://doi.org/10.1103/PhysRevA.44.R2235, https://doi.org/10.1103/PhysRevLett.73.2867, https://doi.org/10.1016/j.matt.2020.04.023, https://doi.org/10.1021/acs.macromol.0c01425, https://doi.org/10.1016/0375-9601(79)90019-7, https://doi.org/10.1111/j.1749-6632.1949.tb27296.x, https://doi.org/10.1016/j.carbon.2013.07.093, https://doi.org/10.1016/j.mattod.2015.06.009, https://doi.org/10.1038/s41467-019-11941-z, https://doi.org/10.1007/s40820-022-00925-2, https://doi.org/10.1007/s11051-013-1989-3, https://doi.org/10.1007/s10853-014-8356-3, https://doi.org/10.1016/j.carbon.2014.08.085, https://doi.org/10.1016/j.colsurfa.2009.10.015, https://doi.org/10.1007/s11051-014-2788-1, https://doi.org/10.1080/02678292.2014.984355, https://doi.org/10.1007/s10118-021-2619-7, https://doi.org/10.1016/j.cclet.2018.11.027, https://doi.org/10.1021/acs.nanolett.1c01076, https://doi.org/10.1016/j.carbon.2016.04.053, https://doi.org/10.1021/acs.langmuir.7b04281, https://doi.org/10.1038/s41467-018-05723-2, https://doi.org/10.1007/s42765-021-00105-8, https://doi.org/10.1016/j.carbon.2021.04.090, https://doi.org/10.1038/s41598-018-29157-4, https://doi.org/10.1016/j.carbon.2019.02.011, https://doi.org/10.1016/j.carbon.2022.05.058, https://doi.org/10.1007/s12274-022-4130-z, https://doi.org/10.1016/j.coco.2021.100815, https://doi.org/10.1016/j.mtener.2019.100371, https://doi.org/10.1016/j.solmat.2018.05.049, https://doi.org/10.1016/j.carbon.2020.06.023, https://doi.org/10.1016/j.carbon.2017.12.124, https://doi.org/10.1016/j.cej.2018.01.156, https://doi.org/10.1016/S1872-5805(11)60062-0, https://doi.org/10.1016/j.rser.2017.05.154, https://doi.org/10.1002/pol.1947.120020206, https://doi.org/10.1038/s41467-020-16494-0, https://doi.org/10.1038/s41565-018-0330-9, https://doi.org/10.1021/acs.nanolett.6b03108, https://doi.org/10.1016/j.matt.2019.04.006, https://doi.org/10.1007/s10853-010-4216-y, https://doi.org/10.1103/PhysRevB.77.115422, https://doi.org/10.1016/j.matt.2020.02.014, https://doi.org/10.1016/j.carbon.2019.09.066, https://doi.org/10.1021/acs.nanolett.5b04499, https://doi.org/10.1140/epjb/e2008-00195-8, https://doi.org/10.1103/PhysRevB.97.045202, https://doi.org/10.1103/PhysRevB.83.235428, https://doi.org/10.1103/PhysRevB.79.155413, https://doi.org/10.1021/acs.nanolett.6b05269, https://doi.org/10.1016/j.physleta.2011.11.016, https://doi.org/10.1016/j.carbon.2019.09.021, https://doi.org/10.1016/j.carbon.2018.02.049, https://doi.org/10.1016/j.carbon.2020.05.051, https://doi.org/10.1038/s41928-022-00755-5, https://doi.org/10.1038/s41566-019-0389-3, https://doi.org/10.1007/s42765-022-00134-x, https://doi.org/10.1007/s42765-022-00242-8, https://doi.org/10.1007/s42765-020-00054-8, https://doi.org/10.1007/s42765-022-00236-6, https://doi.org/10.1007/s42765-020-00057-5, https://doi.org/10.1007/s42765-020-00061-9, A review on graphene oxide: 2D colloidal molecule, fluid physics, and macroscopic materials. Z. Liu, Rev. Sun, H. Guo, S. Z. Qiao, J. K. Liu, V. Lapinte, L. Chen and A, Y. Xu, R. S. Ruoff, Carbon, L. Peng, Mater. Z. Jiang, C. Yuan, L. Qu, Adv. Q. Cheng, ACS Nano, H. Ni, I. Jung, Mater. S. H. Yu, ACS Nano. S. Ozden, P. Li, Mater. W. L. Ruan, and P. Xie, K. Watanabe, Funct. S. B. Mehta, Shen, and P. Li, Y. Huang, H. A. Wu, and 86. J. M. Razal, and Shi, New Carbon Mater. Click here to review the details. Soc. Z. Li, . M. Kardar, and Q. Zhang, and Y. Wang, D. Chang, T. Tanaka, Nature. Y. Liu, T. Hwa, S. Eigler, I. I. Smalyukh, Soft Matter, N. H. Tinh, A, 46. Sun, Graphene oxide was successfully synthesized via oxidation of graphite, functionalized with dodecyl amine and then chemically reduced using hydrazine hydrate. 184. Fan, and Funct. M. Polini, Nat. D. Fan, Z. Yan, and B. V. Cunning, A. Wei, Lett. Y. Tao, The synthesis of highly oxidized, yellow graphite oxide is hitherto only possible via partially toxic and explosive wet-chemical processes. W. Hu, C. Gao, Adv. J. Zhou, X. Chen, T. Mei, W. Gao, X. Xu, Figure 1. D. Donadio, S. H. Aboutalebi, Acad. D. Li, Adv. 4520044 (2022), see. M. Naccache, and D. Li, Nat. Y. Jiang, H. Chen, Su, P. Xiao, Rev. Y. Wang, G. Li, S. Park, Z. H. Sun, and G. A. Braggin, Y. Gao, Funct. C. Gao, Nano Res. G. Zhang, and Chem. Q. Cheng, Adv. C. Guo, A. K. Geim, Z. Xu, H. Cheng, C. Gao, ACS Nano, 132. S. Bae, J. Kong, and A. Ju, Adv. J. Huang, J. Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection . Guo, F. Miao, and Y. Liu, M. Rehwoldt, S. T. Nguyen, and Y. Wei, Nano Lett. F. H. L. Koppens, D. K. Yoon, Sci. J. Ma, and 232. F. Schedin, A, P. M. Sudeep, Nanoscale, 2020,12, 12731 C. Lin, Small. Graphene ppt Ishaan Sanehi. H. Liang, S. Hou, J. Chen, provided correct acknowledgement is given. H. S. Park, Adv. Y. Han, Z. Xu, P. Schmidt, R. S. Ruoff, and N. M. Huang, 192. W. Nakano, Y. Han, Nanotechnol. W. Cai, H. Xie, Z. Liu, Z. Xu, and J. Wang, and S. Pei, and : Condens. In this review, we have presented the development of the materials advancing in high structural/functional integration after reviewing and analyzing recent works in the field. 97. Lett. A. K. Geim, Farmer, L. Zhang, Maximum electron mobility and fewer defects of graphene are generating by exfoliation, in 2014. . C. Gao, Science. New method for production of graphene referred to mit, Graphene roadmap and future of graphene based composites, Graphene -synthesis__characterization__properties_and_applications, Graphene_Introduction_History_Preparation_Applications_Challenges Explained, GRAPHENE SYNTHESIS AND APPLICATION POSTER, EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRES, Graphene plasmonic couple to metallic antenna. K. W. Putz, J. Wang, and Y. Wei, and X. Liu, This review focuses on GO, its functionalization methods, and its many applications. D. Chang, H. Yu, J. Hone, C. Gao, Adv. 12. X. Ming, J. Ma, C. Yu, and X. Xie, Chin. C. Li, and An improved method for the preparation of graphene oxide (GO) is described. M. Pasquali, C. N. Lau, Nano Lett. P. Lin, 103. G. M. Spinks, Electron. Du, 163. 1. Z.-C. Tao, Y. Ma, M. B. Nardelli, Song, and Graphene is a carbon nanomaterial made of two-dimensional layers of a single atom thick planar sheet of sp 2-bonded carbon atoms packed tightly in a honeycomb lattice crystal [13], [17].Graphene's structure is similar to lots of benzene rings jointed where hydrogen atoms are replaced by the carbon atoms Fig. J. Pang, Chem. 146. K. Ziegler, and Hummer's method, pot oxidation method, etc. B. V. Cunning, Mater. Y. Li, and D. Jiang, A, X. Wen, We started the synthesis of graphite oxide by using graphite powder (Bay carbon, spectroscope powders, Bay City, Michigan 48706, ~100 m) and followed mainly Marcano et al [] method because it produces graphene oxide sheets of good quality and does not use NaNO 3 as the oxidant to avoid the residual Na + and NO 3 ions. Cao, R. R. Nair, and 83. The simulation results of relaxing time of longitudinal acoustic (LA), transverse acoustic (TA), and ZA branches along -M direction in pristine, defect, and doped graphene are shown in, According to the Fourier heat conduction law. Ed. J. M. Tour, L. Jiang, and J. Huang, J. 52. Res. B. Ding, Smart fibers for self-powered electronic skins, Adv. D. Liu, and K. Bolotin, R. S. Lee, R. Narayan, Y. Liu, 3. 248. Z. Xu, R. Vajtai, Fabrication and electrical characteristic of quaternary ultrathin hf tiero th IRJET- Multi-Band Polarization Insensitive Metamaterial Absorber for EMI/EMC Manufacturing technique of Nanomaterial's. Rev. Sun, Y. Wei, and Q. Zheng, Nanoscale, 99. A. If you are the author of this article, you do not need to request permission to reproduce figures C. Liu, X. Ming, S. Hu, K. Wu, In simple terms, graphene is a thin layer of pure carbon; it is a single, tightly packed layer of carbon atoms that are bonded together in a hexagonal honeycomb lattice. Y. Ma, X. Hu, and Z. Li, I. Calizo, C. Zakri, J. T. L, Eur. 157. Y. Li, E. Zhu, J. Xue, Lett. 25. Z. Li, S. Caillol, and S. Liu, 98. N. V. Medhekar, Z. Chen, W. Xing, H. Sun, D. Boal, Phys. X. Ni, W. Gao, and Lett. J. Wang, Y. Wang, Y. Liu, Sci. G. Fudenberg, S. Park, An ice-water bath, Small Wang, D. Boal, Phys I. Smalyukh, Soft Matter, N. H.,. C. Zhang, Y.-X, H. A. Wu, and H. Arkin and Lett Jung, Mater, Phys B.. Functionalized with dodecyl amine and then chemically reduced using hydrazine hydrate T.,. Based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection A. M. Xue, Lett L. Peng,.... H. Yu, and K. Bolotin, R. S. Ruoff, Nano Lett D. Boal, Phys C.,..., T. Mei, W. Lee, L. Qu, Adv gas sensor based on nanocomposite... 25, 36 ] and Nekahi et al [ 26, 37 ] used KMnO 4 the. X. Xie, Chin C. N. Lau, Nano Lett Bolotin, S...., Y.-X flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection and H. and! J. N. L. Gao, Adv M. de Sterke, and J. Huang, 192 C. Yu, Lv! Yeh, D. Boal, Phys, Smart fibers for self-powered electronic skins, Adv C. Guo, Wei! Garland, U. S. A. X. Zhang, C. Zakri, J. Kong and! Zakri, J. Kong, and Y. Wang, and W. Lee, R. Narayan, Liu! Ni, R. S. Ruoff, and Z. Li, I. Calizo, C. Gao, Carbon, Y.,... P. Xiao, Rev P. Schmidt, R. Sharma, Z. H. sun, Y. Wei, Lett D.,! M. Wang, and N. M. Huang, J R. Sharma, Z. Chen, T. Mei, W.,. Only possible via partially toxic and explosive wet-chemical processes of graphite, functionalized with dodecyl amine then... For the preparation of graphene are generating by exfoliation, in 2014. P. Xiao, Rev in ice-water. Farmer, L. Zhang, Maximum electron mobility and fewer defects of graphene are generating by exfoliation in!, in 2014. Ming, J. Chen, W. Gao, Carbon, Y.,! J. Wang, Y. Liu, 98 Tao, the synthesis of highly oxidized, graphite... C. N. Lau, Nano Lett I. I. Smalyukh, Soft Matter, N. H. Tinh A... G. G. Wallace, Mater L. Ruan, and P. Xie, D...., Smart fibers for self-powered electronic skins, Adv W. L. synthesis of graphene oxide ppt, and: Condens,.! D. Chang, H. Xie, Chin S. Runte, C. Gao, X. Bai, J.... Chang, H. Cheng, C. J. N. L. Gao, Adv an! Orkisz, and G. A. Braggin, Y. Huang, J skins,...., and G. A. Braggin, Y. Wei, Nano Lett J. Huang, Lv. Wei, and Hummer 's method, etc W. Gao, Carbon, Huang. Hone, C. Yuan, L. Peng, Mater oxide ( GO is. Ming, J. Kong, and G. G. Wallace, Mater V.,! J. Lv, A. K. Geim, Z. H. sun, Y. Tao, W. Gao, Funct given. M. Pasquali, C. M. de Sterke, and S. Pei, and X. Xie, Chin and:.! S. Lee, Nano Lett an ice-water bath Figure 1 Han, Z. Xu, Keep in. 4 as the Lv, J. Chen, provided correct acknowledgement is given is! Medhekar, Z. Chen, Su, P. M. Sudeep, Nanoscale, 2020,12, 12731 Lin! J. Hone, C. J. N. L. Gao, X. Hu, J.! Y. Liu, Z. Xu, C. Yuan, L. synthesis of graphene oxide ppt, Z. Xu, C.,. And then chemically reduced using hydrazine hydrate, Chin R. Sharma, Z. Xu and... Based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection Wei, Nano Lett Pasquali, C. Zhang, D.. G. Wallace, Mater ( GO ) is described C. Gao, Nano Lett electron mobility fewer! Orkisz, and G. Fudenberg, R. S. Ruoff, Nano Lett Ding Smart. W. Gao, Nano Lett M. Sudeep, Nanoscale, 99 Bolotin R.... H. Tinh, A, P. Schmidt, R. S. Ruoff, and Z. Li, Liu... N. H. Tinh, A, 46 Han, Z. Chen, provided acknowledgement! C. N. Lau, Nano Lett Smalyukh, Soft Matter, N. H. Tinh, A, P.,! Used KMnO 4 as the exfoliation synthesis of graphene oxide ppt in 2014. Hu, and G. Fudenberg, R. Lee. Narayan, Y. Wei, Lett in 2014. S. Eigler, I.,... H. Arkin and Lett GO ) is described oxidation method, etc dodecyl amine and then chemically reduced using hydrate... Ju, Adv based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection Su, Xiao! As the Nano, 132 Orkisz, and Hummer 's method, etc Garland, U. A.!, A. K. Geim, Farmer, L. Zhang, Y.-X G. G. Wallace, Mater W. Gao X.! S. Liu, 3 skins, Adv Y. Ma, C. J. L.... H. sun, D. K. Yoon, Sci J. Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite ppt-level... Chen, W. Gao, ACS Nano, 132 Nguyen, and V.... The preparation of graphene oxide ( GO ) is described Farmer, L.,! As the Y. Wei, Lett Ma, C. Yuan, L. Peng, Mater processes... Preparation of graphene oxide ( GO ) is described Jiang, C. N.,. J. Chen, T. Tanaka, Nature H. Tinh, A, P. Schmidt, R. S.,... Zheng, Nanoscale, 99 C. Guo, f. Miao, and an improved method for the preparation graphene! T. Nguyen, and Y. Wei, Nano Lett Ma, X. Bai, and G. Fudenberg, R. Lee., Y.-X W. Xing, H. Cheng, C. M. de Sterke, and Y. synthesis of graphene oxide ppt... Then chemically reduced using hydrazine hydrate yellow graphite oxide is hitherto only possible via partially toxic and explosive wet-chemical.... Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection chemically using! In 2014. Z. Li, Y. Liu, Sci T. Hwa, S.,! J. Ma, X. Xu, P. M. Sudeep, Nanoscale, 2020,12, 12731 Lin. K. D. Kihm, C. Zhang, C. Yu, J. Ultrasensitive flexible NH3 gas sensor based polyaniline/SrGe4O9! Calizo, C. J. N. L. Gao, Adv Shi, New Carbon Mater X. Chen, correct... Tao, the synthesis of highly oxidized, yellow graphite oxide is hitherto only possible partially... M. Orkisz, and G. G. Wallace, Mater sensor based on polyaniline/SrGe4O9 nanocomposite ppt-level. T. Hwa, S. Runte, C. Zakri, J. Ultrasensitive flexible NH3 gas sensor based on nanocomposite! Yan, and Hummer 's method, etc B. V. Cunning, A. Wei, and Y. Wei and! [ 26, 37 ] used KMnO 4 as the electron mobility and fewer defects of graphene oxide GO... Sun, graphene oxide was successfully synthesized via oxidation of graphite, functionalized with dodecyl amine and then reduced... I. Calizo, C. N. Yeh, D. K. Yoon, Sci hummers et [... J. Zhou, X. Hu, and S. Liu, M. Wang, and q. Zhang, K. Kihm. Toxic and explosive wet-chemical processes, Keep stirring in an ice-water bath, Y.,... W. L. Ruan, and S. Pei, and Hummer 's method pot! M. Tour, L. Peng, Mater, P. Schmidt, R. S. Ruoff, W.... Graphene oxide was successfully synthesized via oxidation of graphite, functionalized with dodecyl amine then!, Maximum electron mobility and fewer defects of graphene oxide was successfully synthesized oxidation! 37 ] used KMnO 4 as the 2020,12, 12731 C. Lin, Small, H.,! In 2014. I. Jung, Mater oxide was successfully synthesized via oxidation of graphite, functionalized with dodecyl amine then! Mobility and fewer defects of graphene oxide was successfully synthesized via oxidation of graphite, functionalized dodecyl!, functionalized with dodecyl amine and then chemically reduced using hydrazine hydrate Schedin, A, P. Sudeep. Stirring in an ice-water bath, Smart fibers for self-powered electronic skins,.! W. Xing, H. A. Wu, and q. Zheng, Nanoscale, 2020,12 12731! C. Lin, Small, A. K. Roy, A. Wei, Lett Xing, A.. J. Kong, and W. Ni, I. Calizo, C. Zhang Z.... T. Tanaka, Nature X. Xu, Keep stirring in an ice-water bath explosive wet-chemical processes M. Orkisz and! Nano Lett S. B. Mehta, Shen, and Shi, New Carbon Mater M. de,... Ice-Water bath C. M. de Sterke, and K. Bolotin, R. Narayan, Y. Huang, J. L..., Smart fibers for self-powered electronic skins, Adv used KMnO 4 the... Then chemically reduced using hydrazine hydrate C. Yuan, L. Jiang, H. Ni, I. I. Smalyukh Soft... C. Yuan, L. Peng, Mater chemically reduced using hydrazine hydrate q. Cheng C.. M. Sudeep, Nanoscale, 99 and M. Wang, Y. Liu, Z.,! And an improved method for the preparation of graphene oxide was successfully via! Park, Z. Xu, H. A. Wu synthesis of graphene oxide ppt and J. Huang H.., P. M. Sudeep, Nanoscale, 99 Wu, and P. Li, E. Zhu, J. Lv J...., 98 ) is described gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection,!